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Hard and Soft-Core Equations of 
State for Simple Fluids 
VIII. Soft-Core Equations of State and 
Characteristic Curves? 

JOHN STEPHENSON 

Theoretical Physics Institute, University of Alberta, Edmonton, Alberta, Canada T6G 2J 1 .  

A class of soft-core equations of state is constructed by introducing a temperature dependent 
molecular volume parameter into hard-core equations of state. Characteristic curves are cal- 
culated numerically for a soft-corc version of the Frisch model, parameterized by a “softening 
temperature” T ,  and a repulsive potential exponent ~ 7 .  The entire range of beliaviour from the 
extreme hard-core ( T ,  = x.) to soft-core (7, = 0) limit is investigaled. 

1 INTRODUCTION 

In this paper we return to the problem of describing the characteristic 
curves of a simple fluid. In two previous papers (I1 and I11 of this series)’ 
we showed that hard-core equations of state are capable of describing the 
characteristic curves of argon in the comparatively low temperature and 
pressure region surrounding the critical point: T 5  lOT, ,  P 5 20P,. At 
higher temperatures soft-core effects become apparent through the tem- 
perature dependence of the second and higher virial coefficients. In par- 
ticular the second virial coefficient locates the termination temperatures 
TA , TD and TE of the second order characteristic curves A T ,  A P  and A ,  associa- 
ted with the Amagat line A .  (11) These characteristic curves make a wide sweep 

t Work supported in part by the Natural Scientific and Engineering Research Council of 
Canada, Grant No. A6595 
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154 J O H N  STEPHENSON 

around the critical point generally at rather high temperatures and pressures, 
and, with the exception of A T ,  intersect the fusion curve. This behaviour is 
not accounted for by a hard-core equation of state (111). 

In the next section we discuss how to soften the core and how to introduce 
this soft-core into a hard-core equation of state, thereby constructing the 
corresponding soft-core equation of state. The remainder of the paper 
contains technical details concerning the calculation and scaling of the 
critical constants and termination temperatures (Section 3), the calculation 
of the characteristic curves (Section 4), the construction of the coexistence 

FIGURE 1 
The argon melting curve (Ar) has been included. 

Characteristic curves for the soft-core Frisch (F) model with N = 4 and t ,  = I .  

curve (Section 5), and the selection of a “cut-off ” criterion at high densities 
(Section 6). The T,  = 0 limit is considered in some detail. However in Section 
7 we discuss the desirability of placing a lower bound on the softening tem- 
perature T,, so that the critical density remains less than the largest permitted 
zero-point density. 

Our results are essentially summarized in Figures 1-4, which display the 
characteristic curves for the soft-core Frisch model3 with N = +(n = 12) 
for various values of T,, including zero. 
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EQUATIONS OF STATE FOR FLUIDS 155 

FIGURE 2 As for Figure I .  

FIGURE 3 As for Figure 1 ,  but with t ,  = 0. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
5
3
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



156 JOHN STEPHENSON 

FIGURE 4 As for Figure 3 

2 SOFT-CORE EQUATIONS OF STATE 

The question arises as to how to introduce a soft-core. It would be desirable 
to employ the equation of state for a fluid with a reasonably realistic inter- 
molecular potential, such as the Lennard-Jones m - n potential, for ex- 
ample. Such equations of state can be constructed for fixed values of the 
exponents m and n, e.g. m = 6, n = 12, and will be studied in a subsequent 
paper. However it is our purpose here to investigate the entire range of 
possible behaviour of a simple fluid between extreme hard and soft-core 
limits. Se we have preferred to adopt a model expression, as in IV, for the 
molecular volume parameter b which will describe the softening of the core 
at high temperatures. We set 

where b, is the hard-core value of b at zero temperature. This provides two 
parameters: the exponent N which can be related to the exponent n of the 
repulsive part of the intermolecular potential ( N  = 3/n); and the softening 
temperature T,, which may be varied in the range 0 to co. This is just the 
T,  - N model studied in IV, where the termination temperatures were cal- 
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EQUATIONS OF STATE FOR FLUIDS I57 

culated for a range of values of T,  and N .  In this paper we shall first fix N 
and vary T,  between the hard-core limit T,  = co and the soft-core limit T,  = 0. 
We shall choose N = a, corresponding to a repulsive exponent n = 12. 
Qualitatively similar results for the characteristic curves are obtained for 
other choices of N .  We shall also investigate the soft-core limit in some 
detail, since it is important for analysis of the loci of C,  extrema in the next 
paper of this series. 

One way of introducing a soft-core molecular volume into an equation 
of state would be to replace the second virial coefficient by a more realistic 
temperature dependent expression, such as the classical second virial coef- 
ficient for a Lennard-Jones potential, leaving all higher virial coefficients 
unchanged. Instead we have chosen to insert the soft-core form (1) for the 
molecular volume parameter b into every virial coefficient by substitution 
in the hard-core equation of state variable 

x = bp. (2) 
This retains the technical simplicity of the hard-core equation of state 
calculations, in I and 111, while introducing a reasonable high-temperature 
behaviour in all the virial coefficients. This substitution has the disadvantage 
that the critical value of the compressibility factor 2 G (PV/RT)  is un- 
changed (Section 3 (13) below), and also necessitates the introduction of 
a “cut-off” into the phase diagram at high densities (Section 6). The dimen- 
sionless density, temperature and pressure variables are now 

d = bop, ( 3 4  
b, R T  t = -  

a 

b i P  p = -  
CI 

and the equation of state 

becomes 
P = RTp$(bp) - up2 

p = dt$ (x )  - d2 .  

The second virial coefficient is now 

a 
RT 

B = b - - -  

1 
= bo {[I + ( t / t s f i  - !-} 

as in the T,  - N model in IV (27). 
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I58 JOHN STEPHENSON 

The selection of the underlying hard-core model is made through the 
function #(x), for which various suggestions were summarized and dis- 
cussed in I. Most of the calculations reported in this paper will be for the 
Frisch model ( F )  with 

Qualitatively similar results are obtained for the other models considered 
in I. Figures 1-4 display the characteristic curves for the soft-core Frisch 
model with N = a and t ,  = 1 and 0. The pressure, density and temperature 
are scaled by their critical values, and a logarithmic scale has been used for 
the pressure and temperature. 

3 CRITICAL POINT CONSTANTS 

The critical point for the soft-core equation of state is located by applying 
the usual conditions that the critical isotherm have a horizontal point of 
inflexion there. Since the required derivatives are at constant temperature, 
the form of the equations for p , ,  T,  and P, are the same as in the hard-core 
case, except that b is replaced by its soft-core from (1). The critical value of 
the parameter x( = bp)  is the solution of 

(8) 
just as in the hard-core case. The critical density, temperature and pressure 
are now given by 

# - x@ - x 2 p  = 0 

bPc = x,, (94  
2x 

(= tco 7 say) - bR T ,  -- 
a C# + x4’1’ 

where x takes its critical value x, on the right-hand side. It is convenient to 
denote the scaled critical temperature and pressure for the underlying hard- 
core model by tcO and pco ,  as in (9b) and (9c). Then the scaled critical density, 
temperature and pressure for the soft-core model become 

t ,  = so(+) = GO[l + ($7. 
a, = X < @ ) , P C  = P C 0 t )  2 9 
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EQUATIONS OF STATE FOR FLUIDS I59 

or in ratio form 

2 
pc= (:). 
Pco 

Clearly the value of the compressibility factor Z in our soft-core model is 
unchanged from the hard-core value, which depends on the choice of the 
function 4. We have from (10) and (1 1) 

(13) 
z = e = P c o  P 

dctc X A 0 ‘  

The calculation of the critical constants proceeds by choosing values for N 
and t,, solving (10) numerically for t,, and substituting in (11) or (12). The 
values of x c ,  tcO and pco are known from the underlying hard-core model. 
Actually the solution of (10) for tc/tco and the ratios in (12) are independent 
of the choice of model for 4. Numerical values of these ratios are presented 
in Table I for a range of values of t$tCo. For large t,, tc/tcO - 1, and for small 
t,, tC/tco - (tco/ts)N’(’-N). For small t ,  the asymptotic form of t, is similar 
to that of the characteristic temperatures in IV (31)’ so in the soft-core 
limit their ratios remain finite. [In the soft-core limit it therefore becomes 
essential to scale the density, temperature and pressure by their critical 
values, Section 41. Some numerical values of the critical temperature t, 

TABLE I 

Ratios of critical parameters t , ,  d ,  and pc for the soft- 
core T,-Nmodel with N = 4 to the critical parameters 
t r O .  x,, pco for the corresponding hard-core model. 
These ratios are independent of the choice of hard- 
core model ( F ,  CS, etc.). For a selected value of 
t , / t , , .  the ratio ~ J I , ~  is calculated from Eq. (10). and 

and then d,/x,  = t,/tCo, and pc/pco = (tJtco)z. 

log,, ts!tcO log,, t d r ,  t e l f c O  = &!x, I’c!Pco 

3.0 2.9261 
2.0 1.8728 
1.5 1.3345 
I .o 0.7862 
0.5 0.2263 
0.0 - 0.3465 

- 0.5 -0.9332 
- 1.0 - 1.5338 
- 1.5 -2.1477 
- 2.0 -2.7735 

I .  I856 
1.3402 
1.4638 
1.6360 
1.8778 
2.2207 
2.7112 
3.4 179 
4.4428 
5.9360 

1.4055 
1.7963 
2.1428 
2.6764 
3.5263 
4.93 17 
7.3503 

11.6821 
19.7387 
35.2358 
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I 60 J O H N  STEPHENSON 

TABLE I1 

Numerical values of the critical temperature t ,  and the logarithms of ratios of characteristic tempera- 
tures to t ,  for the soft-core Frisch ( F )  model with N = & for various values of t ,  

5 0.3753 0.4256 0.7266 1.0277 IX, io a, 
100 0.4738 0.4516 0.7422 1.0332 1.5499 1.8525 2.9161 

10 0.5571 0.4674 0.7534 1.0399 1.4592 1.7525 2.5636 
1 0.7212 ‘0.4885 0.7699 1.0516 1.4020 1.6872 2.3631 

0.7897 1.0675 13745 1.6539 2.2573 
1.7380 0.5334 0.8085 1.0836 1.3662 1.6421 2.2080 

0 x 0.5675 0.8396 1.11 18 1.3702 1.6424 2.1730 

_. ;o 1.0511 0.5121 

and the corresponding (logarithms of) ratios of characteristic temperatures 
to t, are presented in Table I1 for the case N = $, and t, = co, 100, 10, 1, 
_ _  A, d o  and 0. 

4 CHARACTERISTIC CURVES 

The definitions and equations determining characteristic curves are available 
in 11. It is necessary to calculate first- and second-order partial derivatives 
of the pressure with respect to density and temperature. It is trivial to show 
that in terms of scaled variables 

= [+ + x4‘ + 2x@u, + x2f#l”u,], ad at 
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EQUATIONS OF STATE FOR FLUIDS 161 

where 
c1 + 

t ’  

tb t2b 
u1 = -, u2 = - 

b b ’  

uo = 

and . denotes temperature differentiation (a/&) with respect to t. 

remain simple in the soft-core case. 
The defining equations for the zeroth and first order characteristic curves 

c1 + (t/t,>Nl J :  (4 - l)/x = 
t ’  

It is easier to work directly with the general defining equations I1 (Table I) 
and the derivative expressions in (14) above. Since the defining equations 
are (dimensionally) homogeneous in P, p and T it is clear that the resulting 
equations for the various characteristic curves turn out to involve implicit 
relations between x and t, such as for J ,  A, B and C in (16). As a straight- 
forward numerical procedure, for chosen values of N and t ,  one selects the 
temperature ratio t/t,, evaluates x by iteration and hence d/d ,  (from d = 
x[l + ( t / Q N ]  = xtu,), and p /p ,  by substitution in the equation of state (5) 
or (14a). 

Graphs of the characteristic curves are presented in Figures 1-4 in both 
the density vs. temperature and pressure vs. temperature digrams. A logarith- 
mic scale has been employed for pressure and temperature. The features of 
these figures are broadly as expected from earlier work in I1 and 111. The 
characteristic curves associated with A are now obtained with finite ter- 
mination temperatures. 

The calculation of characteristic curves has been extended to the limit 
t ,  = 0, in which case the structure of the defining equations and the partial 
pressure derivatives remains unchanged. In fact there is a certain amount of 
simplification since now 

u 0 +-- ( tc’ t ) l -N,  u1 -+ - N ,  u2 --* N ( N  + 1). 
G O  

(17) 
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162 J O H N  STEPHENSON 

Again one chooses N ,  selects t/tc and iterates numerically to obtain x. 
Then 

N : = ; (i) ’ 
Pc = 5 . d  Peo dc [(;)tco4(x) - x@]. 

The second virial coefficient rescales to 

which is just the soft-core form discussed 
with M = 1. 

in 1V under the M - N model 

5 COEXISTENCE CURVE 

General formulae for determining the coexistence curve for the underlying 
hard-core equation of state were given in I, and we quote these here for ease 
of reference : 

From I(17) one obtains a table of corresponding values of the gas density 
x1 and the liquid density x2 in the hard-core case, and hence from I(18), 
(19) the temperature to  and pressure po  on the vaporization curve, where the 
subscript refers to the hard-core case in which b = bo. Once to is known, the 
temperature t for the soft-core case is obtained by solving numerically the 
implicit relation 

t = l0[1 + (:)*I 
obtained by inserting (1) and (3b) in the left-hand side of I(18) above. The 
pressure p follows similarly from I(19): 

2 

P = Po(;) 

These soft-core coexistence curves have been included in Figures 1-4. 
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EQUATIONS O F  STATE FOR FLUIDS I63 

6 CUT-OFF CRITERIA 

In practice the high density portion of the phase-diagram of a fluid ter- 
minates at the liquid branch of the fusion curve. This is fortunate because the 
soft-core model constructed by modifying the molecular volume param- 
eter b in x( = b p )  has some undesirable properties at high densities, or more 
precisely at large values of x. One consequence is that the coexistence curves 
are distorted from their expected shape in the high-density low-temperature 
region. Further, the necessity of some kind of “cut-off” arises since as y = 
ax -, 1 (in the F ,  G,  T and CS models), the derivative dp /& becomes large 
and negative. (ml and b in (14c) are negative and 4‘ diverges more strongly 
than 4 as y -+ 1). This implies that d p / d t  and also a 2 p / a t 2  and a2p /add t  must 
vanish along certain loci in the density vs. temperature diagram, and that the 
isotherms intersect eachotherinsomeregion. These are not generally expected 
properties of real fluids, although dp /& can be negative for water. Moreover 
the constant volume specific heat C, calculated for the soft-core model can 
fall below its ideal gas value Cu0 at large x, which is clearly unacceptable. 
Rather arbitrarily we have adopted the “safe” cut-off a2p /a t2  = 0, along 
which locus C, passes through a maximum along isotherms. 

Perhaps it is worth noting that the loci d 2 p / 8 t 2  = 0 and d2p /add t  = 0 are 
quite close together in the phase diagram, as are the lines on which i3p/dt = 0 
and C, equals its ideal gas value Cue. (C, cut-off). Moreover at “low” tem- 
peratures (less than t ,  for the van der Waals equation, irrespective of N )  the 
d p / &  = 0 locus can lie in the physical region where C ,  > Coo. It is clear from 
the thermodynamic identity 

with a2p /8 t2  being negative at low densities, that the a 2 p / d t 2  = 0 cut-off 
occurs at lower densities than the C, cut-off. General expressions can be 
derived for the various “cut-off” criteria lines mentioned above, but these 
are not of sufficient interest to merit further discussion. 

7 RANGE OF VALUES OF t,$ 

Another kind of “cut-off” can be established at low temperatures by insist- 
ing that the zero-point density be greater than some arbitrarily prescribed 
value, such as the critical density (say). This places a lower bound on the 
acceptable range of values of the softening temperature t , .  The critical 
density 

d ,  = bop, = x,[l + (t)“3 (=%), 
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I64 JOHN STEPHENSON 

varies in value from x, in the hard-core limit to arbitrarily large values for 
small softening temperatures t,. On the other hand, at zero temperature 
the (scaled dimensionless) density d equals x, and the maximum permitted 
value of x is 4 for the F ,  G, T and CS models, at which value the pressure is 
infinite. Alternatively we may wish to restrict x to a maximum value x, 
determined by the close-packed hexagonal value z 3, or the simple-cubic 
packing value ~ 2 ,  as in I(4). And again we might wish to keep the density 
less than the fluid-solid transition value determined by molecular dynamics, 
in which case p < 0.67 x close-packing (hcp) density, or x, < 0.67 x 2.962 
x 2, so x,/x, Z 4. 

If we require d, I x, then 

x, 2 x,[l + (y] = *, 
tco 

which limits the size of tC/tco. Now from (lo), we obtain corresponding 
limits on the ratios t,/t, and t , / tc0:  

The numerical restrictions on t ,  for the various choices of x, mentioned 
above, with x, = 3 (approximately for the F ,  G and CS models) and N = 
are presented in Table 111. In the van der Waals model x, = 1, and x, = f, 
so x,/xc = 3. However, if one accepts the fusion curve as a natural cut-off, then 
the above restrictions on t ,  are no longer relevant in practice. 

TABLE TI1 

Restrictions on the softening temperature t ,  
when the critical density d, is kept less than a 
prescribed maximum value x,, for the case 
N = $. [See Section 7, Eqs. (24), (25 )  and 
2611. 
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EQUATIONS OF STATE FOR FLUIDS I65 

CONCLUDING REMARKS 

We have partially achieved one of the original aims of this series of papers: 
to model the characteristic curves of a simple fluid by softening the molecular 
core at high temperatures. We plan to extend our analysis to more realistic 
equations of state. The characteristic curves obtained do have the expected 
overall shape (11), which is qualitatively similar for allJinite values of the 
softening temperature t,, even down to the extreme soft-core limit t ,  = 0. No 
surprises occur, even for other possible values of N ,  in contrast to the more 
exotic behaviour of the loci of C, extrema, which are the subject of the follow- 
ing paper. 
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